Performance Evaluation of Generalized Polynomial Chaos

نویسندگان

  • Dongbin Xiu
  • Didier Lucor
  • Chau-Hsing Su
  • George E. Karniadakis
چکیده

In this paper we review some applications of generalized polynomial chaos expansion for uncertainty quantification. The mathematical framework is presented and the convergence of the method is demonstrated for model problems. In particular, we solve the first-order and second-order ordinary differential equations with random parameters, and examine the efficiency of generalized polynomial chaos compared to Monte Carlo simulations. It is shown that the generalized polynomial chaos can be orders of magnitude more efficient than Monte Carlo simulations when the dimensionality of random input is low, e.g. for correlated noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Numerical Solutions of Stochastic Differential Equations

In this paper we present an adaptive multi-element generalized polynomial chaos (ME-gPC) method, which can achieve hp-convergence in random space. ME-gPC is based on the decomposition of random space and generalized polynomial chaos (gPC). Using proper numerical schemes to maintain the local orthogonality on-the-fly, we perform gPC locally and adaptively. The key idea is to combine the polynomi...

متن کامل

Automatic synthesis of uncertain models for linear circuit simulation: A polynomial chaos theory approach

A generalized and automated process for the evaluation of system uncertainty using computer simulation is presented. Wiener–Askey polynomial chaos and generalized polynomial chaos expansions along with Galerkin projections, are used to project a resistive companion system representation onto a stochastic space. Modifications to the resistive companion modeling method that allow for individual m...

متن کامل

COUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS

‎In the following text for arbitrary $X$ with at least two elements‎, ‎nonempty countable set $Gamma$‎ ‎we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map‎. ‎We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney‎, ‎exact Dev...

متن کامل

On the Convergence of Generalized Polynomial Chaos Expansions

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which im...

متن کامل

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003